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ABSTRACT
While only generating a minuscule percentage of global traffic,
largely lost in the noise of large-scale analyses, remote rural net-
works are the physical frontier of the Internet today. Through
tight integration with a local operator’s infrastructure, we gather
a unique dataset to characterize and report a year of interaction
between finances, utilization, and performance of a novel, remote,
data-only Community LTE Network in Bokondini, Indonesia. With
visibility to drill down to individual users, we find use highly un-
balanced and the network supported by only a handful of relatively
heavy consumers. 45% of users are offline more days than online,
and the median user consumes only 77 MB per day online and
36 MB per day on average, limiting consumption by frequently
“topping up” in small amounts. Outside video and social media,
messaging and IP calling provided by over-the-top services like
Facebook Messenger, QQ, and WhatsApp comprise a relatively
large percentage of traffic consistently across both heavy and light
users. Our analysis shows that Internet-only Community Cellular
Networks can be profitable despite most users spending less than
$1 USD/day, and offers insights into the unique properties of these
networks.

CCS CONCEPTS
• Networks → Network measurement; Network manageability;
• Information systems→ Traffic analysis.
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1 INTRODUCTION
At the close of 2020, the UN’s International Telecommunications
Union (ITU) estimates that 51% of the global population is “using
the Internet,” and 93% of the earth’s population is covered by a 3G,
4G, or 5G mobile broadband network [27]. Yet as has been well-
documented over the last 20 years, the exact nature and definition of
use can vary widely [15]. Furthermore, while 93% coverage is a great
achievement, this leaves over 500 million people still unconnected,
mostly in rural, remote, and hard to serve areas.

The GSMA published in 2017 that traditional mobile networks
have largely expanded their footprint to all areas where service
is profitable, that new deployments are slowing, and that new
paradigms are needed if Internet access is to reach those who re-
main unconnected [5]. Community Networks, networks owned
and operated by the community members that they serve, are a
promising paradigm that changes the economics of sustainable
deployment [8, 16, 25, 39]. Community Cellular Networks, Com-
munity Networks based on mobile access technologies like GSM,
UTMS, LTE, (and now 5G-NR), offer advantages relative to technolo-
gies like WiFi mesh networks in performance or TV-Whitespace
in device availability, but at the cost of more complex licensing
and deployment [23, 30, 38, 46]. Community Cellular Networks are
particularly well suited to remote rural use cases, where spectrum
is readily available (if secondary use is allowed) and wide-area cov-
erage is desirable. Due to their remote nature, these networks often
operate with satellite-based backhaul links, limiting performance
in terms of both latency ( 500ms RTT, although this is changing–
see 6.3.1) and throughput (1-10Mbps aggregate for all users). While
these conditions are constrained, they are the reality of “access” to
the demographics currently on the frontier of the Internet.

In this work, we explore a modern, extremely remote, data-only,
Community LTE Network in Bokondini, Indonesia. The network is
run by a nonprofit affiliated with a school situated in the town cen-
ter, and covers most of the town. We were able to tightly integrate
with the operator’s systems to gather a dataset integrating both
technical and business information, allowing us to analyze user
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traffic as well as how users purchase and spend prepaid balance in
the network. Our data collection spans over a year of the network’s
operation, covering 53 weeks from midnight March 10, 2019 to
midnight March 15, 2020 (local time UTC+9). We ask whether a
prepaid, satellite-based, data-only, mobile network can be profitable
without subsidies, what applications will be used in such a network,
how frequently will users interact with the network, and how will
users manage their prepaid credit?

We find the network is profitable, but that average-based met-
rics fail to capture on-the-ground reality with a small population
size. We observe individual use is highly intermittent; users elect to
purchase many small amounts of data rather than one lump sum,
and many are offline for days at a time. Use is also unequal. Heavy
“whale” users contribute disproportionately to the network’s finan-
cial sustainability, and light and heavy users differ both in the way
they use the network as well as by how much. Video dominates
the backhaul link, but video consumption is driven primarily by a
small subset of users. Large platforms (Google & Facebook) source
the majority of traffic and reach all users, but we find local trends
can also have strong effects on the network.

We analyze how the network can remain profitable despite a
relatively small number of users and an Average Revenue Per User
(ARPU) of less than $1USD per day, and hope to offer a detailed
characterization of the unique and understudied properties of an
extremely remote network at the outer reaches of the mobile Web.

2 RELATEDWORK
2.1 Community Networking
This research builds on a long history of work on community net-
working. Community networks, networks owned and operated by
users in some sort of collaborative way, have long been viewed
as a promising mechanism for increasing access among rural and
disadvantaged populations [20]. Community networks can operate
using a variety of technologies including standard telephony [2],
802.11WiFi [8], or cellular protocols [25] and examples exist in both
rural [23] and urban environments [39], and developing [23, 25, 31]
and developed countries [8, 16, 39, 42].

With the variety of community networks, there are similarly
a variety of engagements with them in the networking literature.
For example, the team behind Guifi.net, operating the preeminent
community network with over 35000 nodes in Catalonia [8], has
explored a wide swath of issues including topologies [53], cloud
services [45], and sustainability [7]. Works related to other net-
works have explored appropriate network architectures [23, 38],
licensing [42], and many other myriad issues in community net-
working. A notable consistent thread is the importance of human
factors in the operation of the network. This is echoed in Jang et
al. which explored leveraging local actors to conduct maintenance
and repair [28] and Moreno et al. discussing the importance of user
engagement for sustainability of community networks [41].

Most similar to this paper, there is a body of measurement stud-
ies in community networks. Heimerl et al. [25] presented mea-
surements of inbound versus outbound traffic in an Indonesian
2G community network, finding outbound traffic was much more
significant. They also explored the sustainability of the network,
finding that it was economically viable. Follow-on research explored

phone adoption in the same community [26]. Cerdà-Alabern et al.
explored the financials of the Guifi network [12]. Lertsinsrubtavee
et al. [36] recorded Web usage in a Thai community network, find-
ing that usage behavior was similar to that of commercial networks
in significant ways, such as a focus on social networks. Unfortu-
nately, they also found that user apps performed similarly (e.g.
downloading lots up updates) despite the limited bandwidth avail-
able. This is supported by Johnson et al. [29], where a rural Zambian
WiFi network saw similar behavior. Our work expands this liter-
ature to explore 1) the specifics of service utilization in data-only
LTE networks, 2) service use combined with service utilization, 3)
addition of techniques for mitigating the operational difficulties of
data collection behind limited backhaul for studies like these, and
4) a more modern (2020) look into the operation of these networks.

2.2 Rural and Developing Networks
Outside of community networks (comprised of both developing and
developed regions) [12, 25, 29, 36], there is also a body of network
measurement literature in rural and developing regions. Often uti-
lizing traces from telecoms, ISPs, or regional IXPs, these works
explore the unique circumstances of rural networks. These include
studies on broadband performance and adoption in Nepal [32], Pak-
istan [6], or South Africa [13]; cellular performance in India [48] and
Pakistan [4]; censorship in Pakistan [1]; mobile phone properties
in a Pakistani cellular network [3], and web latency in Ghana [57].
These have scaled up to continent-wide analyses, such as IPv6 adop-
tion [37], interdomain routing [17], and inter-country latency [19]
in Africa. World-wide studies exist as well, such as Schinkler et al.’s
work on the performance of Facebook’s edge caching [43].

The massive diversity of these works, inclusive of multiple conti-
nents, scales, technologies, populations, and venues, demonstrates
the value of breadth in network measurement research. While each
individual research agenda is not (and does not claim to be) “repre-
sentative” of the Internet in whole, together they provide a holis-
tic, diverse perspective on Internet use throughout the world. Our
work contributes to this whole with the perspective of an extremely
remote, data-only cellular network. In addition, we provide new
insights by analyzing network traces together with records of user
spending and the network’s finances.

2.3 Small-scale Network Measurements
Lastly, a body of research focuses on small-scale networks, servic-
ing households or small groups of people but not in an explicitly
community-oriented fashion. One example is Maitland et al.’s ex-
ploration of Internet use in a refugee camp [44], where the network
is run by the UN Refugee Agency. They found a wide range of
experiences with the Internet in the camp, contributing to a set of
barriers to access. Another set of works focus on tribal Internet,
with Vigil et al. [54] explicitly focusing on failures in the use of
apps like YouTube in the context of a TVWS deployment in US
tribal lands. Even some of the community networking work cited
above (notably Hasan et al. [23] and Martinez-Fernandez et al. [38])
involved partnerships with outside organizations, such as telecoms
for spectrum, limiting the extent of the community participation.
These works similarly broaden the range of measurements possible
and inform elements of the novelty of our work.
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We also note a large body of home and consumer Internet mea-
surement [21, 22, 52]. While relevant in that community networks
often leverage consumer Internet connectivity, their needs and ex-
pectations differ greatly from networks serving customers directly.

3 CONTEXT
3.1 Deployment Location
Bokondini, Indonesia, is a community of ~2,000 located two hours
drive (on a rough muddy road) from Wamena in the highlands of
Papua. Bokondini, a central location for missionary activities for
decades, still has limited infrastructure. There is a small airstrip,
but no community-wide water or reliable power. The local regency
government moved to Bokondini two years ago, and the town has
been growing quickly. A national carrier has provided 2G coverage
via a satellite-based small cell through a universal access program
for about 4 years, but there was no Internet access until recently.
During the final weeks of this study the carrier began offering LTE
service nearby, still served by satellite. Mobile phones are common,
with a critical number of LTE-capable devices already present [47].

3.2 Network
The network profiled in this paper is an instance of a Community
Cellular Network, owned and operated since 2013 by a missionary
group whose primary function is running an elementary school
in the area. They manage the day-to-day operations, including
maintenance, credit sales to resellers, power management, and
repairs. They operate a 5000KW microhydro and solar installation
which powers the network as well as the school’s lighting and
computers. Unfortunately, the microgrid does not have enough
reserve power to operate 24 hours a day, so the network is shut
down manually between 11pm-5am (extended to 12-4:30am part
way through the trial) to conserve power.

Our research group has a nearly a decade of experience working
with them to explore different approaches to rural connectivity. The
current iteration is a rural-optimized LTE network designed and
installed in 2018. Demand has fluctuated, serving between 40 and
80 users when operational. Its topology is relatively simple, with
Radio Access (RAN) provided by a commodity eNodeB installed
on the top of the school’s gymnasium, connecting existing user
handsets. An x86 mini-computer hosts an Open Source EPC to ter-
minate all LTE signaling from the eNodeB, connected to a generic
IP router with NAT, and ultimately a consumer-grade very small
aperture satellite terminal (VSAT) providing Internet backhaul. The
site originally connected to another community via wireless re-
lay to share a 3Mbps/1Mbps 8:1 (downlink/uplink & contention
ratio) VSAT, but the relay was destroyed by lightning and a dedi-
cated 1Mbps/256K 8:1 connection was temporarily established. This
dedicated connection was later upgraded to 3Mbps/1Mbps 4:1.

Despite being an LTE network, no voice or SMS services are
provided. The network operator encourages users to employ “over
the top“ (OTT) services like WhatsApp, Facebook Messenger, or
Viber which are already extremely popular. Most users have dual-
sim phones, and register themselves via SMS on the national carrier
2G network. Providing only generic IP data greatly simplifies the
network architecture and reduces associated costs and liabilities
from interconnect and identity (phone number) management.

Table 1: Dataset summary statistics

Log Count % GB %
Internet Flows 56,001,999 74.5 1,324.9 98.9
Intranet Flows 19,179,804 25.5 15.1 1.1
Internet DNS Mapped 53,755,278 96.0 1214.6 91.7
Internet Org. Assigned 47,077,375 84.1 1250.7 94.4
Internet Categorized 46,826,941 83.6 1219.9 92.1
Transactions 40,450 100 - -

3.2.1 Credit Model. The operator uses a prepaid model, where
users pay cash to a reseller in 1:1 exchange for “credit” on their
account denominated in the local currency. Users later use a locally
hosted web application to convert their credit into “data,” denom-
inated in bytes, allowing Internet access until the corresponding
amount of data has been transferred and the balance falls to zero.
The country’s main commercial carriers also use prepaid models,
and they are well-understood by local users. For distribution, the
operator first generates credit via an admin interface and sells it
to three different resellers in the community at a wholesale rate.
The resellers own small stores, selling basic goods like rice, oil,
and candy, and are open for most of the day. They pass credit
onto end-users with a small margin using a locally hosted mobile
web-interface developed by the researchers for the network.

Users can purchase arbitrary amounts of credit from resellers,
and transfer it between users accounts. After loading their credit,
there are three data packages available: 10MB, 100MB, and 1GB.
Data pricing is flat, at Rp250(~$0.01USD)/MB. Local services are
zero-rated, and all external traffic is billed equally.

3.2.2 Utilization. The Bokondini community network had ~50
users active at any point across the study period, where active
means traffic to or from the user was measured in the network or
the user made a credit transaction. Figure 1 shows the amount of
traffic each day during the study period, the number of users active
active at different aggregation levels, and the cumulative number of
SIM cards registered with the network. We expected some attrition
as SIMs are lost and replaced or users leave town. The combination
of school break and several community members streaming a reli-
gious conference led to particularly high usage in late December
and early January. During the last month of the study, a national
operator began offering LTE service nearby, at a lower price point
than the community network. This is correlated with the drop in
traffic and active users observed in late February and early March.
Despite the drop in activity, the network remained profitable.

4 DATASET & METHODOLOGY
We leverage two collected datasets: 1) network credit transaction
logs, and 2) fused logs of IP andDNSmetadata.We tightly integrated
our instrumentation with the operator’s existing systems to avoid
overhead and gain access to ground-truth per-device information,
but this required accepting the availability limitations of these
existing systems detailed in section 3.2.

4.1 Data Collection
4.1.1 Credit Transactions. The credit transaction log records (1)
when an administrator adds credit to the system, (2) when credit is

1485



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Matthew Johnson, Jenny Liang, Michelle X. Lin, Sudheesh Singanamalla, and Kurtis Heimerl

Figure 1: Network Activity vs. Time. The amount of traffic per day(Left) is highly variable and enveloped by the operational
events detailed in table 2. Internet traffic eclipses local traffic by two orders of magnitude. The monthly online user count
holds steady at around 60 users except for an extended outage in the summer and a peak in early 2020 as many new users join
the network. Which users are online on particular days is variable and intermittent.

transferred between users, and (3) when a user ultimately purchases
data with their credit. Each entry contains a timestamp, user ID,
transaction type (see section 3.2.1), amount, and for transfers, a
destination user ID. It is implemented as an asynchronous Javascript
module extending the network’s existing admin application. This
analysis contains 40,450 transaction logs (see table 1).

4.1.2 Data Flows. The data flow log records an entry for each
flow in the community cellular network. Flows are defined by their
“five-tuple”, consisting of the IP source and destination address,
the transport layer protocol, and transport layer port numbers if
applicable. The data was collected IPv4/IPv6 agnostically, and we
use the term “IP” here to refer to either IPv4 or IPv6. The system
aggregated individual packets from each flow into 20 minute in-
tervals, and at the end of the interval recorded the five-tuple, the
interval start and stop timestamps, and the total number of bytes
transferred in uplink and downlink. A shorter interval was not
used due to anonymization concerns (see section 4.3.1) and limited
local storage. By integrating with the network’s policy control and
billing system, our instrumentation could map each flow to a SIM
card and user account. A post-processing step replaced the flow’s
local address with a scrambled user ID, coded with the same key as
the credit transaction log to associate flows and transactions with
the same entity. The raw data contains 75,181,803 flow logs.

4.1.3 Intermediate DNS Responses. DNS establishes a likely map-
ping between observed destination IP addresses and the domain
name a user is contacting. To augment the flow data with domain
information, we collected an intermediate dataset of response times-
tamps, requesting scrambled user ID, domain requested, dns server
response code, list of IP addresses returned from the DNS server,
and list of address TTLs.

In post-processing we reconstructed the likely DNS state at each
user’s client over time, modeling each user as a single device with
a shared DNS state, and iterating through the combined raw DNS
and flow logs by time for each user. Each DNS response updates
the client state to map the response IP addresses to the requested
domain name. Since multiple DNS entries may point to the same
IP address, the mapping can be ambiguous. We record the set of

Table 2: Notable events impacting network operation.
July 2017 Initial site visit and surveys
October 21, 2018 Initial launch of network with pilot users
October 31, 2018 Scaling of network by adding 10 new users
Feb 18, 2019 Transition to open network
March 10, 2019 Beginning of dataset
July 12-26, 2019 Extended outage due to relay lightning strike
July 26, 2019 Reconnected directly to school’s VSAT
July 26-Sept 1, 2019 No credit sold while working with school
November 22, 2019 Operation extended to 4:30am to Midnight
December 1, 2019 VSAT Upgrade to 3/1 Mbps at 4:1 contention
February 20, 2020 National carrier begins operating 4G nearby
March 15, 2020 End of dataset

possibly ambiguous names and select themost recent for annotation.
For each flow encountered, the current client DNS state is consulted.
If the IP address has a known mapping, it is assigned from the DNS
state. If the IP is not in the client state, we attempt a reverse DNS
lookup for the IP address. Only if the reverse DNS lookup fails, we
mark the host as unknown. For each flow we record the name, type
of mapping (Client DNS or reverse DNS), and the count of possible
ambiguities. While simplistic, we find this model mostly sufficient
for this dataset, with 50,676,332 of flows covering 90.5 % of bytes
coming from observed client DNS responses, and 41.1% of flows
and 31.7% of bytes having an unambiguous mapping.

4.2 Data Processing
Once collected and anonymized, the data was uploaded to a central
server for analysis. We periodically uploaded subsets of the data
during off-peak hours to minimize the impact on user traffic. Before
analysis, we removed users who join the network less than one
week before the end of the data collection period (N=0) or who
were active for less than one day (N=3). After filtering the final
dataset contains 168 users and 72,278,238 flows.

4.2.1 Classifying Domain Names. Through manual inspection we
hand-built rules to classify domain names and tag them with an
“organization” and “category.” We built the classifiers by iteratively
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grouping flows by domain, sorting by the total bytes transferred,
and looking for patterns in the top domains. As passive observers in
the network, our methodology provides no ability to accurately de-
termine the ground truth contents of encrypted flows. We consulted
the domains themselves, whois data, publicly available documenta-
tion in the case of APIs, and sites hosted at the domain to determine
the parent organization responsible for each domain and its con-
tents. We classified all domains and IP addresses with 200MB total
transferred in the network or more, assigning an organization and
category to over 83 % of flows covering over 92 % of the total traffic.

We have made a best-faith effort to categorize traffic as thor-
oughly and faithfully as possible, preferring more detailed cate-
gories like “video” or “messaging” over generic ones like “social
media” or “software and updates” where possible. We fully acknowl-
edge the limitations of this approach, discussing them inmore detail
in section 4.4. Ultimately we mapped 98 organizations and 20 cate-
gories.We provide these artisanal classification rules and processing
scripts for independent scrutiny and reuse, see section 4.3.1.

4.2.2 Detecting Peer-to-Peer Flows. We found peer-to-peer flows
facilitated by ICE(Interactive Connectivity Establishment) account
for a notable fraction of traffic, particularly in the uplink. We sepa-
rate these flows into their own category by reconstructing the ICE
state at each client and in the network NAT/firewall. ICE works
by having each peer open a connection from the client to a com-
mon server, establishing an open port in each peer’s NAT at the
NAT’s public IP address, which is visible to the server. The server
then shares the each peer’s public port and address with their
counterpart, which the peers attempt to re-use to establish direct
connections if their NATs/firewalls allow it. If a direct connection
cannot be established, the server falls back to relaying connection
packets on behalf of the peers.

We reconstruct the ICE state by iterating through the flow logs
for each user, and tagging any flows to thewell-known STUN/TURN
listening ports (UDP:3478 or TCP:5349) as likely ICE. After an ICE
flow is detected, if a new flow starts within 1 minute to an unknown
IP address but with the same client ephemeral port, we reclassify
the flow as “Peer to Peer” instead of “Unknown.” Due to port reuse,
there is a low but nonzero probability of false-positive detection,
so we do not reclassify flows already classified by domain.

4.3 Ethics
This work utilizes anonymized per-user flowmetadata and network
transaction history to better understand the dynamics and economic
sustainability of Community Cellular Networks. In consultation
with our institution’s IRB and per locally applicable Indonesian data
protection law, we determined that this work did not need explicit
end-user consent since users were aware that this information
was accessible to the network operator, there is low risk of harm,
and a consent process would require us to collect identifiable user
information which we would not gain access to otherwise. Insights
from this analysis have been shared with the network operator to
improve the quality of service in the community.

4.3.1 Anonymization and Data Access. During data collection the
operator scrambled all network IDs and transaction IDs with a key,
which remained in the community and was destroyed after data

Figure 2: For each user, we count an “Online” day when the
user transferred at least one byte that day. We define the
number of “Active” days as the span between their first and
last interaction with the network.

collection. The key scheme allows correlations between the flow
and transaction logs over the study period only. In generating flow
metadata, only L3 addresses, the L4 protocol number, L4 ports, pay-
load size, and unencrypted DNS responses were collected. Packets
were binned into 20 minute flow chunks and aggregated before
storage, preventing fine-grained timing analysis. All traffic to or-
ganizations with N<5 unique users was grouped and references
to the original domains were dropped from downstream analysis.
The dataset is available open-access at https://doi.org/10.6084/m9.
figshare.13116740.

4.4 Limitations
4.4.1 Flow aggregation. Using aggregated logs instead of per-packet
traces limits the analysis resolution and obfuscates protocol-level
performance. In particular, we cannot comment on the efficiency
of individual flows at the transport level, leverage deeper packet
inspection to verify which higher-level protocols are in use, or use
ML-based timing analysis to predict the flow contents.

4.4.2 Domain and IP-Based Classification. The process of content
categorization is subjective by its nature, but essential for high-level
analysis, since modern CDNs and distributed edge infrastructures
mean that large numbers of unique domains map to the same orga-
nization and service. Our dataset’s limitation to aggregated flows
only adds uncertainty to this process. As an example, we categorize
general infrastructure from traditional social media providers like
Facebook or Twitter as general “social media,” except if the sub-
domain explicitly indicates it hosts video (video.*.fbcdn.net),
messaging traffic (mqtt-edge-*.facebook.com), or advertising
(lithium.facebook.com). While some organizations have an in-
frastructure more amenable to categorization, which uses different
domains for different types of content, others do not. For exam-
ple, all TikTok content appears to come from one set of converged
media servers, even though the platform supports both video and
messaging. We classified converged services by their predominant
category (“video” in the case of TikTok), or a mixed category if
there is no dominant content type. In the cases of Google and Face-
book, it is difficult to distinguish traffic from different user-facing
applications but that are part of the same corporate conglomerate.
For example, it appears that WhatsApp and Instagram use media
CDNs hosted at fbcn.net subdomains, and YouTube pulls content
from video.google.com. All users connected to IP addresses in
Google-owned blocks that had no publicly queryable DNS infor-
mation. We attempted to break applications into their own classes
when possible, but were not able to in all cases.
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Figure 3: Daily Purchase vs. Days Active. Total purchased
amount is encoded in the size and color of each point. Most
usersmake small purchases independently of how long they
have been active, contributing little to overall revenue.

Figure 4: Distribution of spending across users. Consump-
tion was highly unequal, with over half of users spending
less than $100 USD while some users spent over $1000 USD.

4.4.3 Generalizability. We partnered with the network in Bokon-
dini due to its extreme remoteness and its uniqueness as a stan-
dalone satellite-backed LTE network with an approachable operator.
All places are unique, but Bokondini is geographically and cultur-
ally similar to others in the remote highlands of Indonesian Papua.
We don’t claim to show generalizability due to the limitations of our
dataset, but see no reason why our findings should be site specific.

5 RESULTS
In this section we detail the major results of our analysis. Con-
trary to our expectations given the network’s low throughput
(3/1Mbps D/U shared across all users), we find highly unequal
consumption between users, that many users consume with inter-
mittent access rather than frugal access, and that video and major
platforms still play a large role in the network. Additional non-
essential information and supplementary plots can be found at
https://github.com/uw-ictd/ccn-traffic-analysis-2020.

5.1 Inequality & Sustainability
5.1.1 A Wide Range of Spending. Network use was highly skewed,
with some users spending 5.5x the average amount, and 8.3x the

Figure 5: Relative use of data packages. The small (10MB)
was most popular, but most bytes were purchased with the
medium (100MB). The large (1GB) package was used rarely.

median. Figure 4 shows the distribution of total network revenues
from each user. While over 20% of users spent less than $10USD
and 50% less than $100USD, three spent over $1000USD equivalent,
generating an outsized portion of total revenue. Figure 3 normalizes
spending by the amount of time users are active. The three heavy
spenders are visible as outliers in the top right of the chart, spending
a large amount per day on average and connecting consistently.

The heaviest users average over 300MB per day online, while
the median consumes only 76.6MB. This disparity surprised us,
since we hypothesized the network was bandwidth constrained,
would not meet demand, and would have many users at the ceiling
of available capacity. This has implications for the planning and
operation of remote networks, further discussed in section 6.3.

5.1.2 Frequent Data Topups, But Sporadic Credit. The network
billing system offers 3 data packages: 10MB, 100MB, and 1GB to
purchase with account credit at a uniform price per MB (see 3.2.1).
Examining the transaction logs, we found the 10MB package is
the most popular, while most "bytes" are purchased in the 100MB
sized package. The 1GB package is rarely used (see figure 5). The
network’s flat pricing schedule does not incentivize purchasing
large packages, and users will often quickly purchase several small
packages to synthesize the exact amount they want. We grouped
the chains of purchases which occur within one minute from one
to the next, and plot them in figure 6. Synthesized packages are
still often small, with the bulk of packages coming in at 200MB or
below. The network’s interface is designed to minimize friction for
this workflow, requiring only two taps to make a data purchase.

Users tended to make frequent small data purchases through the
web portal multiple times a day, even after accounting for purchase
chaining. Figure 7 shows a CDF of the time between data purchase
chains across users. 95% of users make a purchase every 10 hours
or less on average, and over 90% of users have a 90th percentile
inter purchase time of 10 hours or less as well. Frequent purchasing
could help manage overall consumption and provide a sense of
control over spending and background processes.

We hypothesized there would be a clear distinction observable
between users who maintain a store of credit in the network for
on-demand data purchasing and users who do not, but we found
the reality to be much more ambiguous. 23.8% of users maintain a
positive credit balance more than 95% of the time, but they tend to
be new to the network. Of users active for more than 30 days, only
19.3 % have a positive balance more than 95% of the time. Figure 8
plots the fraction of time that each user had no credit while active
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Figure 6: Amounts of data purchased in a single “chain”.
Amounts which occurred more than 1000 times are marked
with red diamonds. The predefined 10MB and 100MB
amounts were most popular, but users frequently synthe-
sized non-standard packages to better suit their needs.

Figure 7: Time between user data purchase “chains”. Most
users commonly purchase data multiple times a day.

Figure 8: A cluster of new users tends to have nonzero bal-
ance most of the time, but a wide variety of ratios can be
seen across both long-time and relatively new users. Orange
square users were already members at the beginning of log-
ging and have a manually adjusted start balance.

versus the number of days they were active. We observe a wide
variety of ratios at all time scales, indicating that the amount of
time a user has zero balance may be more random and situational
rather than a strategic choice.

Figure 9: CDF of Online ratios. The fraction of days users
connect is highly variable. ~8% connectmost days, but the re-
maining ~90% are distributed across a range of online ratios,
even conservatively ignoring days with unplanned outages.

Having a 0 balance means that the user does not have data
available on demand (in case of emergency or otherwise), and
would need to visit a physical reseller to get access. In other contexts
researchers have noted that users may prefer to not carry a digital
balance to avoid pressure from friends and family to loan them
data [56], or to keep reserves in more flexible cash with different
affordances for bargaining and negotiation [34].

5.1.3 Intermittent Use. Network use, even among the heaviest
users, is highly intermittent. Comparing the number of days a
user is online to the number of days they are active (see figure 2),
we find that the median user is offline 53% of the days in their active
time window. Only 7.7% of users access the network more than 95%
of the days they are active. Figure 9 shows a CDF of the user Online
Day/Active Day ratio, showing a roughly uniform distribution of
the fraction of time online after accounting for the small number
of users always online.

This itermittency impacts the operator’s network planning and
business operations, and is reflected in top-level statistics about the
network. Figure 1 demonstrates this, where the count of unique
daily, weekly, and monthly users differs substantially.

This intermittency combined with the varied amounts of time
users spend without data-on-demand reflects on the core use-cases
of the network. For the majority of users, their connection is not an
always-available lifeline, but rather more sporadic and asynchro-
nous. This may be partly due to the pace of life in general in the
community, where residents are used to tasks taking days or weeks
due to infrastructural limitations, or the availability of the national
carrier’s 2G network for small urgent messages, making the LTE
network less essential.

5.1.4 The Network Is Financially Sustainable. Despite intermittent
use and a relatively small number of users, the Community Cel-
lular network in Bokondini is financially sustainable without an
external subsidy. Re-use of local infrastructure and local installation
labor kept the install capital expenses below Rp150M (~$10,000USD).
Regular maintenance, mostly related to the power system, aver-
ages Rp1.3M (~$95USD)/month, and the satellite subscription costs
$300USD/month (~Rp4.3M). Repairing the backhaul after the light-
ning strike cost twomonths of lost revenue and $1000USD (~Rp14M)
in repair costs, but was covered by existing backup funds. Even
with the downturn in use in February, revenues exceed costs, and
are being invested in expansion to surrounding communities.
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Figure 10: Revenue and Costs vs Time. The Bokondini net-
work is financially sustainable, with top users contributing
a large share of revenue. The costs line includes the upfront
capital expense to deploy the network, regular operational
expenses of monthly maintenance and backhaul, and the
incidental operational expense to repair the network after
lightning damage. User support is handled informally at the
network’s small scale and not accounted.

Figure 11: Uplink/Downlink Ratio vs. Consumption. Many
light users have relatively more uplink traffic than heavy
users, placing a different workload on the network.

Figure 10 visualizes the network’s cumulative revenue over the
study period (ignoring early revenue from the pilot). Calling at-
tention to the role of anchor users, we plot the revenue curves
excluding the top 5, 10, 15, and 20 overall users. The commonly
quoted “ARPU (Average Revenue Per User)” metric does not cap-
ture the diversity of the underlying user population, and the impact
that losing even a handful of these anchor users would have on
the network. Without the top 15 users the network would still be
sustainable after a year of operation, but a typical rural small cell
site, with capex costs on the order of $40,000 USD [50], would not
be. We discuss sustainability further in section 6.3.

5.2 Whales Engage Different Parts of the Web
We expected users would be limited similarly by the tight con-
straints of the Bokondini network on the modern web, but we
find structural differences in the traffic of heavy and light users.
Light users tend to have more balanced uplink/downlink ratios than

heavy users, less video traffic, and also to abstain from games, con-
tent uploading, and dedicated antivirus. This indicates that rather
than just using the network less, lightweight users are actually
using the network differently, consuming a different mix of con-
tent, likely encountering different performance constraints, and
placing a different burden on the network. Figure 11 plots the up-
link/downlink ratio of each user vs. their average consumption.
There is a weak but significant overall correlation (P < 0.0001,
R2 = 0.19).

5.2.1 Video. Examining the categories of flows attributable to
heavy and light users, we find that video traffic makes up a dis-
proportionate fraction of content from heavy users, while other
categories stay relatively constant. All users have at least some
traffic in the video category, but figure 12 shows the explosive
growth of the video category between light and heavy users, con-
centrated in the top 10% of users overall. General social media use
increases for the top 50% of users, but does not see the dramatic
increase video does. We note that video from mainstream applica-
tions like Youtube, Facebook, and TikTok significantly outweighed
adult video sites (~9:1).

In the network as a whole, video (both adult and non-adult)
only consumes 37% of the download bandwidth, compared to the
global mobile Internet market where video makes up 65% of mobile
download traffic [14]. Examining only the 10 heaviest users, video
still only makes up 49% of download bytes. All users in Bokondini
consume less video than the average global user, and the median
user consumes significantly less (~1/3) as a share of her total con-
sumption. The under-representation of video overall compared to
global trends could indicate that prices are too high to support
carefree video streaming and the media rich Web, or the network
may not have sufficient capacity to meet demand.

5.2.2 Hotspotting: NBD. While anecdotally most users connect to
the network via a smartphone, we observe traffic to domains com-
monly associated with computers, such as update.microsoft.com
(Users=5), download.adobe.com (Users=7), and cdn.mozilla.net
(Users=16). Although we expected PC users to consume significant
traffic, and these users all fell into the top 50%, they were not the
heaviest users in the network. Any educational outreach and/or
tool development to manage network traffic will need to focus on
mobile media consumption for the greatest impact.

5.3 Platforms, Reach & Utilization
Breaking traffic down by organization, we see that some organiza-
tions interact with almost all users, while others communicate with
only a small subset. Unsurprisingly Facebook and Google receive
traffic from all users, and WhatsApp from almost all, but TikTok,
QQ Messenger, Twitter, ShareIt Games, W Share, and UShareIt are
also popular, even though they account for a smaller share of over-
all traffic. Compressed web content, consisting of AMP pages or
sites served through the UC browser, was also relatively common.
All users interacted with local services to purchase more Internet
data from their credit balance.

5.3.1 Large Platform Dominance. Traffic to and from Facebook
owned properties (Facebook, WhatsApp, Instagram) made up 39.9
% of bytes, exceeding the Asia-Pacific regional average of 35 % [14].
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Figure 12: Bytes perCategory vs. Decile. Video and Socialme-
dia grows disproportionately between light and heavy users.
The top 20% consumes a large share of total video traffic.

Figure 13: Share per Category vs. Decile. Video use as a share
of total traffic increases sharply for the top 20% while most
other categories remain flat.

Google and google affiliated services account for 31.5 %. Taken to-
gether, these two platforms alone account for 71.4 % of traffic in the
network, supporting observations that large platforms (Facebook
in particular) have wide reach in remote contexts.

5.3.2 Messaging Universality. While video and content consump-
tion account for the most bytes on the network, we found that a
significant amount of network resources go to messaging traffic
and realtime UDP flows, particularly in the uplink. 90 % of users
have some UDP uplink traffic facilitated by ICE (see section 4.2.2),
and ICE or peer to peer bytes make up 6.1 % overall and 26 % of the
uplink. Widespread messaging and communication via the Bokon-
dini community network is surprising given how intermittently
most users are connected and the availability of competing 2G voice
and SMS services. Intermittent messaging use offers an example of
how technology can be adapted to the constraints of remote edge
networks in distinct ways from how it is used in well-connected ar-
eas. We discuss OTT applications and peer-to-peer communication
further in section 6.2.2.

5.3.3 Local Trends. Due to the small number of users, local phe-
nomena can cause large operational impacts to the network. In

Figure 14: Bytes per time of day. The network is usually pow-
ered down at night, but it is a manual process and is skipped
some days if there is power to spare.

December and January we observe 22 users start streaming sessions
from a month-long conference, consuming ~20 % of the network’s
resources for most of the month. The conference site was the 8th
heaviest destination for the year overall, even though it was only
visited for a little over a month by a small set of users. Ways to
cache or "re-stream" content on the local side of the satellite link
could greatly mitigate the impact of similar local phenomena.

5.3.4 Resource Utilization. The total data transferred per day had
high variance, with a mean of 3.82GB and standard deviation of
2.15GB. There are some notable outlier days, where the network
saw more than twice as much traffic as usual. Within each day,
visualised in figure 14, there tends to be a slight bump in utilization
around 12 noon (lunch time) and a stronger increase in use in the
early evening from 6-10, peaking at around 9.

Although the operator maintains a symmetric infrastructure
internally, their satellite backhaul is asymmetric with a 3/1 mbps
down/up ratio. Observed traffic actually exceeds this ratio, with
an overall down/up ratio of 8.5:1 (but which varies per user, see
Figure 11). This indicates downlink is the likely bottleneck for the
system workload, and the uplink could be better utilized or reduced.

5.3.5 Local Services and Local Only Traffic. The network has two
zero-rated local services: one is a portal where members can view
their balance, purchase more data with credit, or transfer credit to
another user, and the other is a local media server stocked with ma-
terial from the school hosting the network. All users interact with
the portal, but it is a basic web application and does not contribute
much to the total traffic. The media server is heavier, serving video
and other rich content, but sees much less regular demand.

While the network allows peer-to-peer communication within
the community, there is only very sparse peer-to-peer traffic. Al-
most all local interactions are between a network user and one of
the two provided services. This may be due to a lack of knowledge
that peer-to-peer is available, or assumptions built into the wider
ecosystem that most LTE networks do not allow local connectivity.
The widespread use of sharing apps indicates that there is demand
for sharing, but almost all sharing activity in our dataset is medi-
ated by Internet services rather than relying on direct discovery in
the local network. This is supported by prior work [25] that found
that community cellular networks are used disproportionately for
external communications.
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6 DISCUSSION
6.1 Practical Challenges Measuring Small Nets
This study presents a longitudinal deep-dive into the operations of a
small Community Cellular Network providing sustainable data ser-
vices in an area only recently reached by other operators. Conduct-
ing this study required significant multi-year effort to coordinate
and integrate new systems, which does not scale down proportion-
ately with network size. By web standards our dataset is miniscule,
and a similar level of integration effort with a larger network would
have yielded a much more statistically powerful result, just due to
the scale of the targeted network. Yet small operators play a large
role in rural access [24], and face unique constraints and challenges.
Tools and techniques, both technical and organizational, that lower
the burden of conducting research and developing technologies for
these environments will likely play an important role in expanding
Web access over the next decade.

6.2 Network Design for Content
6.2.1 Video and Social Media in Constrained Networks. Despite
operating at the extreme edge, we saw video and social media
weigh heavily in the composition of the network’s traffic. Video is
delay tolerant and resource intensive, but currently peaks at the
same time as real-time communication flows. Prior studies have
found that media often circulates locally in close-knit communities,
and is delay tolerant by nature [54]. Traffic shaping tools to identify
heavy flows and prioritize realtime traffic on the satellite backhaul
downlink could improve the experience of a large number of light
users at the expense of only a minor delay in a video download.
Incentives to demand-shift video consumption (by marking videos
to download in the early morning), or encourage local peer-to-peer
sharing could also be explored.

Policy around video opens interesting ethical questions about
the values embedded in the network’s operations. Is video more or
less important than other types of traffic, and is it acceptable that
video consumes such a large fraction of the link?

6.2.2 Messaging Applications & Peer To Peer. A key differentiator
between the network profiled in this research and prior work is
that it is a data only LTE network. The Bokondini network op-
erates neutrally, charging a price per byte independently of the
type of traffic. This forefronts the primacy of flexible over-the-top
messaging services, such as WhatsApp, Messenger, or Viber, over
in-network protocols like Voice-over-LTE (VoLTE). While an all-
data approach eschews traditional network-based quality of service
differentiation, our experience in Bokondini shows IP-based de-
signs to be a massive success in the context of rural networks with
extremely limited backhaul, even for voice.

Anecdotally the network operator reports users think the call
quality of WhatsApp over the community network substantially
exceeds the quality of calls via the national operator’s existing 2G
network and new 4G network, yet it is not immediately clear why
this is the case. Telecom standards by their nature lack flexibil-
ity to adopt new technologies, and can lag behind state-of-the-art
techniques than be quickly pushed out to OTT applications. OTT
services, unlike centralized telecom voice services, also naturally
support peer-to-peer communication, and transparently establish

low-latency connections within the community when possible. We-
bRTC extends this capability to browser-based Web applications as
well [55]. While local call routing is possible in LTE, it is inconsis-
tently implemented since it adds signalling complexity and limits
the telecom’s ability to correctly track calls. Peer-to-peer may be
a nice-to-have feature in well-connected areas, but it can be the
difference between usability and frustration on the extreme edge.

In future work, we hope to rigorously measure the impact of OTT
app design on service quality, digging into the anectdotal evidence
that OTT apps are both less expensive and more performant in
extreme-edge conditions despite the lack of network integration.

6.3 Sustainability & Whales
The sustainability of rural networking solutions is a hot topic in
many policy circles. A host of models exist, leveraging measure-
ments such as the network ARPU (average revenue per user) to
show where networks are and are not viable. Our analysis provides
a more thorough look into user behavior, specifically the distribu-
tion of subscribers in an area. Figure 3, in particular, shows that
these networks have a wide range of types of subscribers, perhaps
more akin to the “whales” present in the freemium games litera-
ture [49]. In our case, three users dominate revenue generation,
pushing the network ARPU (Rp190,308/mo) significantly above
the country average reported by Telkomsel (Rp47,000/mo in April
2019 [11]). Coarse metrics like ARPU, and even average installation
costs, obscure the reality that each community is a unique location
with unique citizens. While the network is still sustainable without
these three individuals, we believe it is important to understand
that “there is no average user” [10].

In terms of building models for future deployments, a survey
of the community may not find these individuals or may find just
them. This variance, inherent in operating where the overall num-
ber of residents is low when compared to dense urban situations,
makes predicting the sustainability of these networks more difficult.
Because of this, we argue that bottom-up decision making, likely
via local entrepreneurs interested in providing connectivity to their
communities, is a more efficient and sustainable way to allocate
resources on the edge.

6.3.1 Future Backhaul. Several companies (OneWeb, Amazon, and
SpaceX, among others) are actively working to send thousands
of satellites into low-earth orbit (LEO) with the promise of high-
quality, low-latency global connectivity. As noted in Kleanse et
al. [33] “Constellations of hundreds to thousands of satellites promise
to offer low-latency Internet to even the most remote areas.”

Given how much this paper focuses on the challenges of oper-
ation behind a backhaul-limited satellite link, these are exciting
times. We wonder though what the ultimate long-term impact of
widely available high-performance satellite networks will be. Will
any of the current community network anchor tenants prefer to
purchase their own private terminal and undermine the sustainabil-
ity of the community network? Will rural site economics change
such that a national operator’s network will cover the entire region?
We are cautiously optimistic that these networks will eventually
deliver service in remote areas with fiber-like latency and an order
of magnitude more throughput than existing geostationary VSATs.
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While this will be a welcome development in the Bokondini net-
work, the per-terminal costs, real-world performance, reliability,
and market impact of these networks remain to be determined.

7 FUTUREWORK
Edge Measurement. The practical difficulty in gathering measure-
ments from the network was surprising. Part of this was due to
the fact that we were not colocated with the network, but with
nearly 30GB of data to analyze, being present in Bokondini would
have stripped us of the ability to investigate the data at scale using
cloud resources. Our group is currently running or assisting in the
operation of networks in the Philippines, Mexico, Hawa’ii, and the
Arctic, so we expect this issue will continue to manifest.

We hope to develop a network-side application which could
perform an efficient, potentially streaming, first-pass analysis and
transfer only compressed results to a longitudinal telemetry service.
This approach could draw from advances in federated learning [9],
to keep sensitive data in the community while improving the quality
of high-level analysis. This application could take into account
network behavior and patterns, optimizing compute and network
utilization against demand in the network. Optimizing the size and
structure of the produced model given the expectation of future
bandwidth availability will be a focus of our research.

Edge Caching. One result from this work is the importance of re-
ducing backhaul reliance through caching and local loops. This
is not a new topic in community networks; Guifi.net has done
extensive work in local services [45] (though due more to polit-
ical desires than backhaul limitations) and others have explored
novel caching schemes in the developing world (notably Raza et
al. [40]). Siskin [51], from Google, is a similar initiative to enable
peer-to-peer connectivity in disconnected environments.

While these efforts bring novel ideas, there is no satisfactory
answer for edge caching yet in an HTTPS world [18]. We do want
to call attention to WPack [35], one particular effort that we find
intriguing. WPack is a proposed standard for downloading and
signing web content explicitly providing support for redistribution
and caching. WPack seems well-suited to the remote community
network environment and could re-enable network caching, while
also supporting secure service utilization, if included in browsers.
We are trackingWPack development closely and hope to eventually
use it to implement a media cache for remote networks.

COVID-19 Analysis. Due to limited healthcare capacity, the gov-
ernment took aggressive action to quarantining area communities
beginning on March 25, 2020. This began with closing schools, then
all roads and markets the following week. The network ecosys-
tem in the community changed drastically; the operators of two
competing hotspot installations left town without providing infras-
tructure (e.g., network credits) for continued operation, and person
to person contact within Bokondini was extremely limited.

It is difficult to draw meaningful conclusions from traffic data
without a clear picture of how the situation evolved on the ground.
We are exploring the impact of the pandemic and its response in-
depth with a wider array of qualitative and technical data.

8 CONCLUSION
Through integration with a local operator’s infrastructure, we gath-
ered a unique dataset to characterize and report a year of finances
and utilization in a, remote, data-only Community LTE Network.
With visibility of single users, we found use highly unbalanced
and the network supported by only a handful of relatively heavy
consumers (“whales”). 45% of users were offline more days than
online, and the median user consumed only 36 MB per day on av-
erage, making frequent purchases in small amounts. We showed
that Internet-only Community Cellular Networks can be profitable
despite most users spending less than $1 USD/day, and provided a
characterization of unique properties of the network.
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